Misplaced Pages

Tungsten ditelluride

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Tungsten ditelluride
Top: Crystal structure of WTe2. Bottom: Single layer of WTe2 viewed from above. (W:gray, Te:red)
Names
Other names tungsten ditelluride
Identifiers
CAS Number
3D model (JSmol)
ECHA InfoCard 100.031.884 Edit this at Wikidata
EC Number
  • 235-086-0
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2Te.WKey: WFGOJOJMWHVMAP-UHFFFAOYSA-N
SMILES
  • ==
Properties
Chemical formula WTe2
Molar mass 439.04 g/mol
Appearance gray crystals
Density 9.43 g/cm, solid
Melting point 1,020 °C (1,870 °F; 1,290 K)
Solubility in water negligible
Solubility insoluble in ammonia
Structure
Crystal structure orthorhombic, oP12
Space group Pmn21, No. 31
Lattice constant a = 3.50 Å, b = 6.34 Å, c = 15.4 Å
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Tungsten ditelluride (WTe2) is an inorganic semimetallic chemical compound. In October 2014, tungsten ditelluride was discovered to exhibit an extremely large magnetoresistance: 13 million percent resistance increase in a magnetic field of 60 tesla at 0.5 kelvin. The resistance is proportional to the square of the magnetic field and shows no saturation. This may be due to the material being the first example of a compensated semimetal, in which the number of mobile holes is the same as the number of electrons. Tungsten ditelluride has layered structure, similar to many other transition metal dichalcogenides, but its layers are so distorted that the honeycomb lattice many of them have in common is in WTe2 hard to recognize. The tungsten atoms instead form zigzag chains, which are thought to behave as one-dimensional conductors. Unlike electrons in other two-dimensional semiconductors, the electrons in WTe2 can easily move between the layers.

When subjected to pressure, the magnetoresistance effect in WTe2 is reduced. Above the pressure of 10.5 GPa magnetoresistance disappears and the material becomes a superconductor. At 13.0 GPa the transition to superconductivity happens below 6.5 K.

WTe2 was predicted to be a Weyl semimetal and, in particular, to be the first example of a Type II Weyl semimetal, where the Weyl nodes exist at the intersection of the electron and hole pockets.

It has also been reported that terahertz-frequency light pulses can switch the crystal structure of WTe2 between orthorhombic and monoclinic by altering the material's atomic lattice.

Tungsten ditelluride can be exfoliated into thin sheets down to single layers. Monolayer WTe2 was initially predicted to remain a Weyl semimetal in the 1T' crystal phase. It was later shown with transport measurements that, below 50K, a single layer of WTe2 instead acts like an insulator but with an offset current independent of doping by a local electrostatic gate. When using a contact geometry that shorted out conduction along the device edges, this offset current vanished, demonstrating that this nearly quantized conduction was localized to the edge—behavior consistent with monolayer WTe2 being a two-dimensional topological insulator. Identical measurements with two- and three-layer thick samples showed the expected semimetallic response. Subsequent studies using other techniques have been consistent with the transport results, including those using angle-resolved photoemission spectroscopy and microwave-impedance microscopy. Monolayer WTe2 has also been observed to superconduct at moderate doping, with a critical temperature tunable by doping level.

Two- and three-layer thick WTe2 have also been observed to be polar metals, simultaneously hosting metallic behavior and switchable electric polarization. The polarization was theorized to originate from vertical charge transfer between the layers, which is switched by interlayer sliding.

References

  1. Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, Florida: CRC Press. pp. 4–92. ISBN 0-8493-0594-2.
  2. Persson, Kristin (2020). "Materials Data on Te2W by Materials Project". LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). doi:10.17188/1198898. OSTI 1198898. {{cite journal}}: Cite journal requires |journal= (help)
  3. Ali, Mazhar N. (2014). "Large, non-saturating magnetoresistance in WTe2". Nature. 514 (7521): 205–8. arXiv:1405.0973. Bibcode:2014Natur.514..205A. doi:10.1038/nature13763. PMID 25219849. S2CID 4446498.
  4. Pletikosic, I; Ali, M N; Fedorov, A V; Cava, R J; Valla, T (2014). "Electronic Structure Basis for the Extraordinary Magnetoresistance in WTe2". Physical Review Letters. 113 (21): 216601. arXiv:1407.3576. Bibcode:2014PhRvL.113u6601P. doi:10.1103/PhysRevLett.113.216601. PMID 25479512. S2CID 30058910.
  5. Behnia, Kamran (22 July 2015). "Viewpoint: Electrons Travel Between Loosely Bound Layers". Physics. 8 (4): 71. arXiv:1506.02214. doi:10.1103/PhysRevLett.115.046602. PMID 26252701. S2CID 22977747. Retrieved 28 July 2015.
  6. Kang, Defen; Zhou, Yazhou; Yi, Wei; Yang, Chongli; Guo, Jing; Shi, Youguo; Zhang, Shan; Wang, Zhe; Zhang, Chao; et al. (23 July 2015). "Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride". Nature Communications. 6: 7804. arXiv:1502.00493. Bibcode:2015NatCo...6.7804K. doi:10.1038/ncomms8804. PMC 4525168. PMID 26203807.
  7. Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun; Wu, Quansheng; Troyer, Matthias; Dai, Xi; Bernevig, B. Andrei (2015). "Type-II Weyl semimetals". Nature. 527 (7579): 495–8. arXiv:1507.01603. Bibcode:2015Natur.527..495S. doi:10.1038/nature15768. PMID 26607545. S2CID 205246491.
  8. Sie, Edbert J.; Nyby, Clara M.; Pemmaraju, C. D.; Park, Su Ji; Shen, Xiaozhe; Yang, Jie; Hoffmann, Matthias C.; Ofori-Okai, B. K.; Li, Renkai; Reid, Alexander H.; Weathersby, Stephen; Mannebach, Ehren; Finney, Nathan; Rhodes, Daniel; Chenet, Daniel; Antony, Abhinandan; Balicas, Luis; Hone, James; Devereaux, Thomas P.; Heinz, Tony F.; Wang, Xijie; Lindenberg, Aaron M. (January 2019). "An ultrafast symmetry switch in a Weyl semimetal". Nature. 565 (7737): 61–66. Bibcode:2019Natur.565...61S. doi:10.1038/s41586-018-0809-4. OSTI 1492730. PMID 30602749. S2CID 57373505.
  9. Qian, X.; Liu, J.; Fu, L.; Li, J. (12 December 2014). "Quantum spin Hall effect in two-dimensional transition metal dichalcogenides". Science. 346 (6215): 1344–1347. arXiv:1406.2749. Bibcode:2014Sci...346.1344Q. doi:10.1126/science.1256815. PMID 25504715. S2CID 206559705.
  10. Fei, Zaiyao; Palomaki, Tauno; Wu, Sanfeng; Zhao, Wenjin; Cai, Xinghan; Sun, Bosong; Nguyen, Paul; Finney, Joseph; Xu, Xiaodong; Cobden, David H. (July 2017). "Edge conduction in monolayer WTe2". Nature Physics. 13 (7): 677–682. arXiv:1610.07924. Bibcode:2017NatPh..13..677F. doi:10.1038/nphys4091. S2CID 104152529.
  11. Wu, Sanfeng; Fatemi, Valla; Gibson, Quinn D.; Watanabe, Kenji; Taniguchi, Takashi; Cava, Robert J.; Jarillo-Herrero, Pablo (5 January 2018). "Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal". Science. 359 (6371): 76–79. arXiv:1711.03584. Bibcode:2018Sci...359...76W. doi:10.1126/science.aan6003. PMID 29302010. S2CID 206660894.
  12. Tang, Shujie; Zhang, Chaofan; Wong, Dillon; Pedramrazi, Zahra; Tsai, Hsin-Zon; Jia, Chunjing; Moritz, Brian; Claassen, Martin; Ryu, Hyejin; Kahn, Salman; Jiang, Juan; Yan, Hao; Hashimoto, Makoto; Lu, Donghui; Moore, Robert G.; Hwang, Chan-Cuk; Hwang, Choongyu; Hussain, Zahid; Chen, Yulin; Ugeda, Miguel M.; Liu, Zhi; Xie, Xiaoming; Devereaux, Thomas P.; Crommie, Michael F.; Mo, Sung-Kwan; Shen, Zhi-Xun (July 2017). "Quantum spin Hall state in monolayer 1T'-WTe2". Nature Physics. 13 (7): 683–687. arXiv:1703.03151. Bibcode:2017NatPh..13..683T. doi:10.1038/nphys4174. S2CID 119327399.
  13. Cucchi, Irène; Gutiérrez-Lezama, Ignacio; Cappelli, Edoardo; McKeown Walker, Siobhan; Bruno, Flavio Y.; Tenasini, Giulia; Wang, Lin; Ubrig, Nicolas; Barreteau, Céline; Giannini, Enrico; Gibertini, Marco; Tamai, Anna; Morpurgo, Alberto F.; Baumberger, Felix (9 January 2019). "Microfocus Laser–Angle-Resolved Photoemission on Encapsulated Mono-, Bi-, and Few-Layer 1T′-WTe 2". Nano Letters. 19 (1): 554–560. arXiv:1811.04629. Bibcode:2019NanoL..19..554C. doi:10.1021/acs.nanolett.8b04534. PMID 30570259. S2CID 53685202.
  14. Shi, Yanmeng; Kahn, Joshua; Niu, Ben; Fei, Zaiyao; Sun, Bosong; Cai, Xinghan; Francisco, Brian A.; Wu, Di; Shen, Zhi-Xun; Xu, Xiaodong; Cobden, David H.; Cui, Yong-Tao (February 2019). "Imaging quantum spin Hall edges in monolayer WTe 2". Science Advances. 5 (2): eaat8799. arXiv:1807.09342. Bibcode:2019SciA....5.8799S. doi:10.1126/sciadv.aat8799. PMC 6368433. PMID 30783621.
  15. Sajadi, Ebrahim; Palomaki, Tauno; Fei, Zaiyao; Zhao, Wenjin; Bement, Philip; Olsen, Christian; Luescher, Silvia; Xu, Xiaodong; Folk, Joshua A.; Cobden, David H. (23 November 2018). "Gate-induced superconductivity in a monolayer topological insulator". Science. 362 (6417): 922–925. arXiv:1809.04691. Bibcode:2018Sci...362..922S. doi:10.1126/science.aar4426. PMID 30361385. S2CID 206665871.
  16. Fei, Zaiyao; Zhao, Wenjin; Palomaki, Tauno A.; Sun, Bosong; Miller, Moira K.; Zhao, Zhiying; Yan, Jiaqiang; Xu, Xiaodong; Cobden, David H. (August 2018). "Ferroelectric switching of a two-dimensional metal". Nature. 560 (7718): 336–339. arXiv:1809.04575. Bibcode:2018Natur.560..336F. doi:10.1038/s41586-018-0336-3. PMID 30038286. S2CID 49907122.
  17. Yang, Qing; Wu, Menghao; Li, Ju (20 December 2018). "Origin of Two-Dimensional Vertical Ferroelectricity in WTe 2 Bilayer and Multilayer". The Journal of Physical Chemistry Letters. 9 (24): 7160–7164. doi:10.1021/acs.jpclett.8b03654. PMID 30540485. S2CID 56147713.
Tungsten compounds
Tungsten(0)
Tungsten(II)
Tungsten(III)
Tungsten(IV)
Tungsten(V)
Tungsten(VI)
Organotungsten(VI) compounds
Polytungstate salts
Salts and covalent derivatives of the telluride ion
H2Te
-TeH
He
Li2Te BeTe B CTe2
(CH3)2Te
(NH4)2Te O F Ne
Na2Te MgTe Al2Te3 Si P0.8Te0.2 S Cl Ar
K2Te CaTe Sc2Te3 Ti VTe2 CrTe
Cr2Te3
MnTe
MnTe2
FeTe CoTe NiTe Cu2Te
CuTe
CuTe2
ZnTe GaTe
Ga2Te3
-Ga
GeTe
-Ge
As2Te3
As4Te3
+As
Se +Br Kr
Rb2Te SrTe Y2Te3 ZrTe5 NbTe2 MoTe2 Tc Ru Rh Pd Ag2Te CdTe In2Te3 SnTe
SnTe2
Sb2Te3 Te
Te
n
I Xe
Cs2Te BaTe * LuTe
Lu2Te3
HfTe5 TaTe2 WTe2
WTe3
ReTe2 Os Ir Pt AuxTey HgTe Tl2Te PbTe Bi2Te3 Po At Rn
Fr RaTe ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaTe
La2Te3
CeTe
Ce2Te3
PrTe
Pr2Te3
NdTe
Nd2Te3
Pm SmTe
Sm2Te3
EuTe
Eu2Te3
GdTe
Gd2Te3
TbTe
Tb2Te3
DyTe
Dy2Te3
HoTe
Ho2Te3
ErTe
Er2Te3
TmTe
Tm2Te3
YbTe
Yb2Te3
** Ac ThTe2 Pa UTe2 Np Pu Am Cm Bk Cf Es Fm Md No

Categories:
Tungsten ditelluride Add topic