Misplaced Pages

ROUGE (metric)

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Metric used for testing NLP models

ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. ROUGE metrics range between 0 and 1, with higher scores indicating higher similarity between the automatically produced summary and the reference.

Metrics

The following five evaluation metrics are available.

  • ROUGE-N: Overlap of n-grams between the system and reference summaries.
    • ROUGE-1 refers to the overlap of unigrams (each word) between the system and reference summaries.
    • ROUGE-2 refers to the overlap of bigrams between the system and reference summaries.
  • ROUGE-L: Longest Common Subsequence (LCS) based statistics. Longest common subsequence problem takes into account sentence-level structure similarity naturally and identifies longest co-occurring in sequence n-grams automatically.
  • ROUGE-W: Weighted LCS-based statistics that favors consecutive LCSes.
  • ROUGE-S: Skip-bigram based co-occurrence statistics. Skip-bigram is any pair of words in their sentence order.
  • ROUGE-SU: Skip-bigram plus unigram-based co-occurrence statistics.

See also

References

  1. Lin, Chin-Yew. 2004. ROUGE: a Package for Automatic Evaluation of Summaries. In Proceedings of the Workshop on Text Summarization Branches Out (WAS 2004), Barcelona, Spain, July 25 - 26, 2004.
  2. Lin, Chin-Yew and E.H. Hovy 2003. Automatic Evaluation of Summaries Using N-gram Co-occurrence Statistics. In Proceedings of 2003 Language Technology Conference (HLT-NAACL 2003), Edmonton, Canada, May 27 - June 1, 2003.
  3. ^ Lin, Chin-Yew and Franz Josef Och. 2004. Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004), Barcelona, Spain, July 21 - 26, 2004.

External links

Categories:
ROUGE (metric) Add topic