Misplaced Pages

Quadratic form (statistics)

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Quadratic form" statistics – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message)

In multivariate statistics, if ε {\displaystyle \varepsilon } is a vector of n {\displaystyle n} random variables, and Λ {\displaystyle \Lambda } is an n {\displaystyle n} -dimensional symmetric matrix, then the scalar quantity ε T Λ ε {\displaystyle \varepsilon ^{T}\Lambda \varepsilon } is known as a quadratic form in ε {\displaystyle \varepsilon } .

Expectation

It can be shown that

E [ ε T Λ ε ] = tr [ Λ Σ ] + μ T Λ μ {\displaystyle \operatorname {E} \left=\operatorname {tr} \left+\mu ^{T}\Lambda \mu }

where μ {\displaystyle \mu } and Σ {\displaystyle \Sigma } are the expected value and variance-covariance matrix of ε {\displaystyle \varepsilon } , respectively, and tr denotes the trace of a matrix. This result only depends on the existence of μ {\displaystyle \mu } and Σ {\displaystyle \Sigma } ; in particular, normality of ε {\displaystyle \varepsilon } is not required.

A book treatment of the topic of quadratic forms in random variables is that of Mathai and Provost.

Proof

Since the quadratic form is a scalar quantity, ε T Λ ε = tr ( ε T Λ ε ) {\displaystyle \varepsilon ^{T}\Lambda \varepsilon =\operatorname {tr} (\varepsilon ^{T}\Lambda \varepsilon )} .

Next, by the cyclic property of the trace operator,

E [ tr ( ε T Λ ε ) ] = E [ tr ( Λ ε ε T ) ] . {\displaystyle \operatorname {E} =\operatorname {E} .}

Since the trace operator is a linear combination of the components of the matrix, it therefore follows from the linearity of the expectation operator that

E [ tr ( Λ ε ε T ) ] = tr ( Λ E ( ε ε T ) ) . {\displaystyle \operatorname {E} =\operatorname {tr} (\Lambda \operatorname {E} (\varepsilon \varepsilon ^{T})).}

A standard property of variances then tells us that this is

tr ( Λ ( Σ + μ μ T ) ) . {\displaystyle \operatorname {tr} (\Lambda (\Sigma +\mu \mu ^{T})).}

Applying the cyclic property of the trace operator again, we get

tr ( Λ Σ ) + tr ( Λ μ μ T ) = tr ( Λ Σ ) + tr ( μ T Λ μ ) = tr ( Λ Σ ) + μ T Λ μ . {\displaystyle \operatorname {tr} (\Lambda \Sigma )+\operatorname {tr} (\Lambda \mu \mu ^{T})=\operatorname {tr} (\Lambda \Sigma )+\operatorname {tr} (\mu ^{T}\Lambda \mu )=\operatorname {tr} (\Lambda \Sigma )+\mu ^{T}\Lambda \mu .}

Variance in the Gaussian case

In general, the variance of a quadratic form depends greatly on the distribution of ε {\displaystyle \varepsilon } . However, if ε {\displaystyle \varepsilon } does follow a multivariate normal distribution, the variance of the quadratic form becomes particularly tractable. Assume for the moment that Λ {\displaystyle \Lambda } is a symmetric matrix. Then,

var [ ε T Λ ε ] = 2 tr [ Λ Σ Λ Σ ] + 4 μ T Λ Σ Λ μ {\displaystyle \operatorname {var} \left=2\operatorname {tr} \left+4\mu ^{T}\Lambda \Sigma \Lambda \mu } .

In fact, this can be generalized to find the covariance between two quadratic forms on the same ε {\displaystyle \varepsilon } (once again, Λ 1 {\displaystyle \Lambda _{1}} and Λ 2 {\displaystyle \Lambda _{2}} must both be symmetric):

cov [ ε T Λ 1 ε , ε T Λ 2 ε ] = 2 tr [ Λ 1 Σ Λ 2 Σ ] + 4 μ T Λ 1 Σ Λ 2 μ {\displaystyle \operatorname {cov} \left=2\operatorname {tr} \left+4\mu ^{T}\Lambda _{1}\Sigma \Lambda _{2}\mu } .

In addition, a quadratic form such as this follows a generalized chi-squared distribution.

Computing the variance in the non-symmetric case

The case for general Λ {\displaystyle \Lambda } can be derived by noting that

ε T Λ T ε = ε T Λ ε {\displaystyle \varepsilon ^{T}\Lambda ^{T}\varepsilon =\varepsilon ^{T}\Lambda \varepsilon }

so

ε T Λ ~ ε = ε T ( Λ + Λ T ) ε / 2 {\displaystyle \varepsilon ^{T}{\tilde {\Lambda }}\varepsilon =\varepsilon ^{T}\left(\Lambda +\Lambda ^{T}\right)\varepsilon /2}

is a quadratic form in the symmetric matrix Λ ~ = ( Λ + Λ T ) / 2 {\displaystyle {\tilde {\Lambda }}=\left(\Lambda +\Lambda ^{T}\right)/2} , so the mean and variance expressions are the same, provided Λ {\displaystyle \Lambda } is replaced by Λ ~ {\displaystyle {\tilde {\Lambda }}} therein.

Examples of quadratic forms

In the setting where one has a set of observations y {\displaystyle y} and an operator matrix H {\displaystyle H} , then the residual sum of squares can be written as a quadratic form in y {\displaystyle y} :

RSS = y T ( I H ) T ( I H ) y . {\displaystyle {\textrm {RSS}}=y^{T}(I-H)^{T}(I-H)y.}

For procedures where the matrix H {\displaystyle H} is symmetric and idempotent, and the errors are Gaussian with covariance matrix σ 2 I {\displaystyle \sigma ^{2}I} , RSS / σ 2 {\displaystyle {\textrm {RSS}}/\sigma ^{2}} has a chi-squared distribution with k {\displaystyle k} degrees of freedom and noncentrality parameter λ {\displaystyle \lambda } , where

k = tr [ ( I H ) T ( I H ) ] {\displaystyle k=\operatorname {tr} \left}
λ = μ T ( I H ) T ( I H ) μ / 2 {\displaystyle \lambda =\mu ^{T}(I-H)^{T}(I-H)\mu /2}

may be found by matching the first two central moments of a noncentral chi-squared random variable to the expressions given in the first two sections. If H y {\displaystyle Hy} estimates μ {\displaystyle \mu } with no bias, then the noncentrality λ {\displaystyle \lambda } is zero and RSS / σ 2 {\displaystyle {\textrm {RSS}}/\sigma ^{2}} follows a central chi-squared distribution.

See also

References

  1. Bates, Douglas. "Quadratic Forms of Random Variables" (PDF). STAT 849 lectures. Retrieved August 21, 2011.
  2. Mathai, A. M. & Provost, Serge B. (1992). Quadratic Forms in Random Variables. CRC Press. p. 424. ISBN 978-0824786915.
  3. Rencher, Alvin C.; Schaalje, G. Bruce. (2008). Linear models in statistics (2nd ed.). Hoboken, N.J.: Wiley-Interscience. ISBN 9780471754985. OCLC 212120778.
  4. Graybill, Franklin A. Matrices with applications in statistics (2. ed.). Wadsworth: Belmont, Calif. p. 367. ISBN 0534980384.
Categories:
Quadratic form (statistics) Add topic