Misplaced Pages

Nakayama algebra

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2024) (Learn how and when to remove this message)

In mathematics, a Nakayama algebra or generalized uniserial algebra is an algebra such that each left or right indecomposable projective module has a unique composition series. They were studied by Tadasi Nakayama (1940) who called them "generalized uni-serial rings". These algebras were further studied by Herbert Kupisch (1959) and later by Ichiro Murase (1963-64), by Kent Ralph Fuller (1968) and by Idun Reiten (1982).

An example of a Nakayama algebra is k/(x) for k a field and n a positive integer.

Current usage of uniserial differs slightly: an explanation of the difference appears here.

References

Category:
Nakayama algebra Add topic