Misplaced Pages

Loop group

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
For groups of actors involved in re-recording movie dialogue during post-production (commonly known in the entertainment industry as "loop groups"), see Dubbing (filmmaking).
Algebraic structureGroup theory
Group theory
Basic notions
Group homomorphisms
Finite groups
Classification of finite simple groups
Modular groups
  • PSL(2, Z {\displaystyle \mathbb {Z} } )
  • SL(2, Z {\displaystyle \mathbb {Z} } )
Topological and Lie groups Infinite dimensional Lie group
  • O(∞)
  • SU(∞)
  • Sp(∞)
Algebraic groups
Lie groups and Lie algebras
Classical groups
Simple Lie groups
Classical
Exceptional
Other Lie groups
Lie algebras
Semisimple Lie algebra
Representation theory
Lie groups in physics
Scientists

In mathematics, a loop group (not to be confused with a loop) is a group of loops in a topological group G with multiplication defined pointwise.

Definition

In its most general form a loop group is a group of continuous mappings from a manifold M to a topological group G.

More specifically, let M = S, the circle in the complex plane, and let LG denote the space of continuous maps SG, i.e.

L G = { γ : S 1 G | γ C ( S 1 , G ) } , {\displaystyle LG=\{\gamma :S^{1}\to G|\gamma \in C(S^{1},G)\},}

equipped with the compact-open topology. An element of LG is called a loop in G. Pointwise multiplication of such loops gives LG the structure of a topological group. Parametrize S with θ,

γ : θ S 1 γ ( θ ) G , {\displaystyle \gamma :\theta \in S^{1}\mapsto \gamma (\theta )\in G,}

and define multiplication in LG by

( γ 1 γ 2 ) ( θ ) γ 1 ( θ ) γ 2 ( θ ) . {\displaystyle (\gamma _{1}\gamma _{2})(\theta )\equiv \gamma _{1}(\theta )\gamma _{2}(\theta ).}

Associativity follows from associativity in G. The inverse is given by

γ 1 : γ 1 ( θ ) γ ( θ ) 1 , {\displaystyle \gamma ^{-1}:\gamma ^{-1}(\theta )\equiv \gamma (\theta )^{-1},}

and the identity by

e : θ e G . {\displaystyle e:\theta \mapsto e\in G.}

The space LG is called the free loop group on G. A loop group is any subgroup of the free loop group LG.

Examples

An important example of a loop group is the group

Ω G {\displaystyle \Omega G\,}

of based loops on G. It is defined to be the kernel of the evaluation map

e 1 : L G G , γ γ ( 1 ) {\displaystyle e_{1}:LG\to G,\gamma \mapsto \gamma (1)} ,

and hence is a closed normal subgroup of LG. (Here, e1 is the map that sends a loop to its value at 1 S 1 {\displaystyle 1\in S^{1}} .) Note that we may embed G into LG as the subgroup of constant loops. Consequently, we arrive at a split exact sequence

1 Ω G L G G 1 {\displaystyle 1\to \Omega G\to LG\to G\to 1} .

The space LG splits as a semi-direct product,

L G = Ω G G {\displaystyle LG=\Omega G\rtimes G} .

We may also think of ΩG as the loop space on G. From this point of view, ΩG is an H-space with respect to concatenation of loops. On the face of it, this seems to provide ΩG with two very different product maps. However, it can be shown that concatenation and pointwise multiplication are homotopic. Thus, in terms of the homotopy theory of ΩG, these maps are interchangeable.

Loop groups were used to explain the phenomenon of Bäcklund transforms in soliton equations by Chuu-Lian Terng and Karen Uhlenbeck.

Notes

  1. Bäuerle & de Kerf 1997
  2. Geometry of Solitons by Chuu-Lian Terng and Karen Uhlenbeck

References

See also

Categories:
Loop group Add topic