Misplaced Pages

Landau–Lifshitz model

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Landau–Lifshitz equation (continuous spin field)) For another Landau–Lifshitz equation describing magnetism, see Landau–Lifshitz–Gilbert equation.

In solid-state physics, the Landau–Lifshitz equation (LLE), named for Lev Landau and Evgeny Lifshitz, is a partial differential equation describing time evolution of magnetism in solids, depending on 1 time variable and 1, 2, or 3 space variables.

Landau–Lifshitz equation

The LLE describes an anisotropic magnet. The equation is described in (Faddeev & Takhtajan 2007, chapter 8) as follows: it is an equation for a vector field S, in other words a function on R taking values in R. The equation depends on a fixed symmetric 3-by-3 matrix J, usually assumed to be diagonal; that is, J = diag ( J 1 , J 2 , J 3 ) {\displaystyle J=\operatorname {diag} (J_{1},J_{2},J_{3})} . The LLE is then given by Hamilton's equation of motion for the Hamiltonian

H = 1 2 [ i ( S x i ) 2 J ( S ) ] d x ( 1 ) {\displaystyle H={\frac {1}{2}}\int \left\,dx\qquad (1)}

(where J(S) is the quadratic form of J applied to the vector S) which is

S t = S i 2 S x i 2 + S J S . ( 2 ) {\displaystyle {\frac {\partial \mathbf {S} }{\partial t}}=\mathbf {S} \wedge \sum _{i}{\frac {\partial ^{2}\mathbf {S} }{\partial x_{i}^{2}}}+\mathbf {S} \wedge J\mathbf {S} .\qquad (2)}

In 1+1 dimensions, this equation is

S t = S 2 S x 2 + S J S . ( 3 ) {\displaystyle {\frac {\partial \mathbf {S} }{\partial t}}=\mathbf {S} \wedge {\frac {\partial ^{2}\mathbf {S} }{\partial x^{2}}}+\mathbf {S} \wedge J\mathbf {S} .\qquad (3)}

In 2+1 dimensions, this equation takes the form

S t = S ( 2 S x 2 + 2 S y 2 ) + S J S ( 4 ) {\displaystyle {\frac {\partial \mathbf {S} }{\partial t}}=\mathbf {S} \wedge \left({\frac {\partial ^{2}\mathbf {S} }{\partial x^{2}}}+{\frac {\partial ^{2}\mathbf {S} }{\partial y^{2}}}\right)+\mathbf {S} \wedge J\mathbf {S} \qquad (4)}

which is the (2+1)-dimensional LLE. For the (3+1)-dimensional case, the LLE looks like

S t = S ( 2 S x 2 + 2 S y 2 + 2 S z 2 ) + S J S . ( 5 ) {\displaystyle {\frac {\partial \mathbf {S} }{\partial t}}=\mathbf {S} \wedge \left({\frac {\partial ^{2}\mathbf {S} }{\partial x^{2}}}+{\frac {\partial ^{2}\mathbf {S} }{\partial y^{2}}}+{\frac {\partial ^{2}\mathbf {S} }{\partial z^{2}}}\right)+\mathbf {S} \wedge J\mathbf {S} .\qquad (5)}

Integrable reductions

In the general case LLE (2) is nonintegrable, but it admits two integrable reductions:

a) in 1+1 dimensions, that is Eq. (3), it is integrable
b) when J = 0 {\displaystyle J=0} . In this case the (1+1)-dimensional LLE (3) turns into the continuous classical Heisenberg ferromagnet equation (see e.g. Heisenberg model (classical)) which is already integrable.

See also

References

  • Faddeev, Ludwig D.; Takhtajan, Leon A. (2007), Hamiltonian methods in the theory of solitons, Classics in Mathematics, Berlin: Springer, pp. x+592, doi:10.1007/978-3-540-69969-9, ISBN 978-3-540-69843-2, MR 2348643
  • Guo, Boling; Ding, Shijin (2008), Landau-Lifshitz Equations, Frontiers of Research With the Chinese Academy of Sciences, World Scientific Publishing Company, ISBN 978-981-277-875-8
  • Kosevich A.M., Ivanov B.A., Kovalev A.S. Nonlinear magnetization waves. Dynamical and topological solitons. – Kiev: Naukova Dumka, 1988. – 192 p.
Categories:
Landau–Lifshitz model Add topic