Misplaced Pages

Kelvin functions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Kelvin function)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (December 2023) (Learn how and when to remove this message)
Plot of the Kelvin function ber(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Kelvin function ber(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In applied mathematics, the Kelvin functions berν(x) and beiν(x) are the real and imaginary parts, respectively, of

J ν ( x e 3 π i 4 ) , {\displaystyle J_{\nu }\left(xe^{\frac {3\pi i}{4}}\right),\,}

where x is real, and Jν(z), is the ν order Bessel function of the first kind. Similarly, the functions kerν(x) and keiν(x) are the real and imaginary parts, respectively, of

K ν ( x e π i 4 ) , {\displaystyle K_{\nu }\left(xe^{\frac {\pi i}{4}}\right),\,}

where Kν(z) is the ν order modified Bessel function of the second kind.

These functions are named after William Thomson, 1st Baron Kelvin.

While the Kelvin functions are defined as the real and imaginary parts of Bessel functions with x taken to be real, the functions can be analytically continued for complex arguments xe, 0 ≤ φ < 2π. With the exception of bern(x) and bein(x) for integral n, the Kelvin functions have a branch point at x = 0.

Below, Γ(z) is the gamma function and ψ(z) is the digamma function.

ber(x)

ber(x) for x between 0 and 20.
b e r ( x ) / e x / 2 {\displaystyle \mathrm {ber} (x)/e^{x/{\sqrt {2}}}} for x between 0 and 50.

For integers n, bern(x) has the series expansion

b e r n ( x ) = ( x 2 ) n k 0 cos [ ( 3 n 4 + k 2 ) π ] k ! Γ ( n + k + 1 ) ( x 2 4 ) k , {\displaystyle \mathrm {ber} _{n}(x)=\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}{\frac {\cos \left}{k!\Gamma (n+k+1)}}\left({\frac {x^{2}}{4}}\right)^{k},}

where Γ(z) is the gamma function. The special case ber0(x), commonly denoted as just ber(x), has the series expansion

b e r ( x ) = 1 + k 1 ( 1 ) k [ ( 2 k ) ! ] 2 ( x 2 ) 4 k {\displaystyle \mathrm {ber} (x)=1+\sum _{k\geq 1}{\frac {(-1)^{k}}{^{2}}}\left({\frac {x}{2}}\right)^{4k}}

and asymptotic series

b e r ( x ) e x 2 2 π x ( f 1 ( x ) cos α + g 1 ( x ) sin α ) k e i ( x ) π {\displaystyle \mathrm {ber} (x)\sim {\frac {e^{\frac {x}{\sqrt {2}}}}{\sqrt {2\pi x}}}\left(f_{1}(x)\cos \alpha +g_{1}(x)\sin \alpha \right)-{\frac {\mathrm {kei} (x)}{\pi }}} ,

where

α = x 2 π 8 , {\displaystyle \alpha ={\frac {x}{\sqrt {2}}}-{\frac {\pi }{8}},}
f 1 ( x ) = 1 + k 1 cos ( k π / 4 ) k ! ( 8 x ) k l = 1 k ( 2 l 1 ) 2 {\displaystyle f_{1}(x)=1+\sum _{k\geq 1}{\frac {\cos(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}}
g 1 ( x ) = k 1 sin ( k π / 4 ) k ! ( 8 x ) k l = 1 k ( 2 l 1 ) 2 . {\displaystyle g_{1}(x)=\sum _{k\geq 1}{\frac {\sin(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}.}
Plot of the Kelvin function bei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Kelvin function bei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

bei(x)

bei(x) for x between 0 and 20.
b e i ( x ) / e x / 2 {\displaystyle \mathrm {bei} (x)/e^{x/{\sqrt {2}}}} for x between 0 and 50.

For integers n, bein(x) has the series expansion

b e i n ( x ) = ( x 2 ) n k 0 sin [ ( 3 n 4 + k 2 ) π ] k ! Γ ( n + k + 1 ) ( x 2 4 ) k . {\displaystyle \mathrm {bei} _{n}(x)=\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}{\frac {\sin \left}{k!\Gamma (n+k+1)}}\left({\frac {x^{2}}{4}}\right)^{k}.}

The special case bei0(x), commonly denoted as just bei(x), has the series expansion

Plot of the Kelvin function ker(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Kelvin function ker(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
b e i ( x ) = k 0 ( 1 ) k [ ( 2 k + 1 ) ! ] 2 ( x 2 ) 4 k + 2 {\displaystyle \mathrm {bei} (x)=\sum _{k\geq 0}{\frac {(-1)^{k}}{^{2}}}\left({\frac {x}{2}}\right)^{4k+2}}

and asymptotic series

b e i ( x ) e x 2 2 π x [ f 1 ( x ) sin α g 1 ( x ) cos α ] k e r ( x ) π , {\displaystyle \mathrm {bei} (x)\sim {\frac {e^{\frac {x}{\sqrt {2}}}}{\sqrt {2\pi x}}}-{\frac {\mathrm {ker} (x)}{\pi }},}

where α, f 1 ( x ) {\displaystyle f_{1}(x)} , and g 1 ( x ) {\displaystyle g_{1}(x)} are defined as for ber(x).

ker(x)

ker(x) for x between 0 and 14.
k e r ( x ) e x / 2 {\displaystyle \mathrm {ker} (x)e^{x/{\sqrt {2}}}} for x between 0 and 50.

For integers n, kern(x) has the (complicated) series expansion

k e r n ( x ) = ln ( x 2 ) b e r n ( x ) + π 4 b e i n ( x ) + 1 2 ( x 2 ) n k = 0 n 1 cos [ ( 3 n 4 + k 2 ) π ] ( n k 1 ) ! k ! ( x 2 4 ) k + 1 2 ( x 2 ) n k 0 cos [ ( 3 n 4 + k 2 ) π ] ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! ( x 2 4 ) k . {\displaystyle {\begin{aligned}&\mathrm {ker} _{n}(x)=-\ln \left({\frac {x}{2}}\right)\mathrm {ber} _{n}(x)+{\frac {\pi }{4}}\mathrm {bei} _{n}(x)\\&+{\frac {1}{2}}\left({\frac {x}{2}}\right)^{-n}\sum _{k=0}^{n-1}\cos \left{\frac {(n-k-1)!}{k!}}\left({\frac {x^{2}}{4}}\right)^{k}\\&+{\frac {1}{2}}\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}\cos \left{\frac {\psi (k+1)+\psi (n+k+1)}{k!(n+k)!}}\left({\frac {x^{2}}{4}}\right)^{k}.\end{aligned}}}
Plot of the Kelvin function kei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Kelvin function kei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

The special case ker0(x), commonly denoted as just ker(x), has the series expansion

k e r ( x ) = ln ( x 2 ) b e r ( x ) + π 4 b e i ( x ) + k 0 ( 1 ) k ψ ( 2 k + 1 ) [ ( 2 k ) ! ] 2 ( x 2 4 ) 2 k {\displaystyle \mathrm {ker} (x)=-\ln \left({\frac {x}{2}}\right)\mathrm {ber} (x)+{\frac {\pi }{4}}\mathrm {bei} (x)+\sum _{k\geq 0}(-1)^{k}{\frac {\psi (2k+1)}{^{2}}}\left({\frac {x^{2}}{4}}\right)^{2k}}

and the asymptotic series

k e r ( x ) π 2 x e x 2 [ f 2 ( x ) cos β + g 2 ( x ) sin β ] , {\displaystyle \mathrm {ker} (x)\sim {\sqrt {\frac {\pi }{2x}}}e^{-{\frac {x}{\sqrt {2}}}},}

where

β = x 2 + π 8 , {\displaystyle \beta ={\frac {x}{\sqrt {2}}}+{\frac {\pi }{8}},}
f 2 ( x ) = 1 + k 1 ( 1 ) k cos ( k π / 4 ) k ! ( 8 x ) k l = 1 k ( 2 l 1 ) 2 {\displaystyle f_{2}(x)=1+\sum _{k\geq 1}(-1)^{k}{\frac {\cos(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}}
g 2 ( x ) = k 1 ( 1 ) k sin ( k π / 4 ) k ! ( 8 x ) k l = 1 k ( 2 l 1 ) 2 . {\displaystyle g_{2}(x)=\sum _{k\geq 1}(-1)^{k}{\frac {\sin(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}.}

kei(x)

kei(x) for x between 0 and 14.
k e i ( x ) e x / 2 {\displaystyle \mathrm {kei} (x)e^{x/{\sqrt {2}}}} for x between 0 and 50.

For integer n, kein(x) has the series expansion

k e i n ( x ) = ln ( x 2 ) b e i n ( x ) π 4 b e r n ( x ) 1 2 ( x 2 ) n k = 0 n 1 sin [ ( 3 n 4 + k 2 ) π ] ( n k 1 ) ! k ! ( x 2 4 ) k + 1 2 ( x 2 ) n k 0 sin [ ( 3 n 4 + k 2 ) π ] ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! ( x 2 4 ) k . {\displaystyle {\begin{aligned}&\mathrm {kei} _{n}(x)=-\ln \left({\frac {x}{2}}\right)\mathrm {bei} _{n}(x)-{\frac {\pi }{4}}\mathrm {ber} _{n}(x)\\&-{\frac {1}{2}}\left({\frac {x}{2}}\right)^{-n}\sum _{k=0}^{n-1}\sin \left{\frac {(n-k-1)!}{k!}}\left({\frac {x^{2}}{4}}\right)^{k}\\&+{\frac {1}{2}}\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}\sin \left{\frac {\psi (k+1)+\psi (n+k+1)}{k!(n+k)!}}\left({\frac {x^{2}}{4}}\right)^{k}.\end{aligned}}}

The special case kei0(x), commonly denoted as just kei(x), has the series expansion

k e i ( x ) = ln ( x 2 ) b e i ( x ) π 4 b e r ( x ) + k 0 ( 1 ) k ψ ( 2 k + 2 ) [ ( 2 k + 1 ) ! ] 2 ( x 2 4 ) 2 k + 1 {\displaystyle \mathrm {kei} (x)=-\ln \left({\frac {x}{2}}\right)\mathrm {bei} (x)-{\frac {\pi }{4}}\mathrm {ber} (x)+\sum _{k\geq 0}(-1)^{k}{\frac {\psi (2k+2)}{^{2}}}\left({\frac {x^{2}}{4}}\right)^{2k+1}}

and the asymptotic series

k e i ( x ) π 2 x e x 2 [ f 2 ( x ) sin β + g 2 ( x ) cos β ] , {\displaystyle \mathrm {kei} (x)\sim -{\sqrt {\frac {\pi }{2x}}}e^{-{\frac {x}{\sqrt {2}}}},}

where β, f2(x), and g2(x) are defined as for ker(x).

See also

References

External links

  • Weisstein, Eric W. "Kelvin Functions." From MathWorld—A Wolfram Web Resource.
  • GPL-licensed C/C++ source code for calculating Kelvin functions at codecogs.com:
Categories:
Kelvin functions Add topic