Misplaced Pages

Classifying topos

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (November 2020) (Learn how and when to remove this message)

In mathematics, a classifying topos for some sort of structure is a topos T such that there is a natural equivalence between geometric morphisms from a cocomplete topos E to T and the category of models for the structure in E.

Examples

  • The classifying topos for objects of a topos is the topos of presheaves over the opposite of the category of finite sets.
  • The classifying topos for rings of a topos is the topos of presheaves over the opposite of the category of finitely presented rings.
  • The classifying topos for local rings of a topos is the topos of sheaves over the opposite of the category of finitely presented rings with the Zariski topology.
  • The classifying topos for linear orders with distinct largest and smallest elements of a topos is the topos of simplicial sets.
  • If G is a discrete group, the classifying topos for G-torsors over a topos is the topos BG of G-sets.
  • The classifying space of topological groups in homotopy theory.

References

External links

Stub icon

This category theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Classifying topos Add topic