Misplaced Pages

Clarkson's inequalities

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, Clarkson's inequalities, named after James A. Clarkson, are results in the theory of L spaces. They give bounds for the L-norms of the sum and difference of two measurable functions in L in terms of the L-norms of those functions individually.

Statement of the inequalities

Let (X, Σ, μ) be a measure space; let fg : X → R be measurable functions in L. Then, for 2 ≤ p < +∞,

f + g 2 L p p + f g 2 L p p 1 2 ( f L p p + g L p p ) . {\displaystyle \left\|{\frac {f+g}{2}}\right\|_{L^{p}}^{p}+\left\|{\frac {f-g}{2}}\right\|_{L^{p}}^{p}\leq {\frac {1}{2}}\left(\|f\|_{L^{p}}^{p}+\|g\|_{L^{p}}^{p}\right).}

For 1 < p < 2,

f + g 2 L p q + f g 2 L p q ( 1 2 f L p p + 1 2 g L p p ) q p , {\displaystyle \left\|{\frac {f+g}{2}}\right\|_{L^{p}}^{q}+\left\|{\frac {f-g}{2}}\right\|_{L^{p}}^{q}\leq \left({\frac {1}{2}}\|f\|_{L^{p}}^{p}+{\frac {1}{2}}\|g\|_{L^{p}}^{p}\right)^{\frac {q}{p}},}

where

1 p + 1 q = 1 , {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1,}

i.e., q = p ⁄ (p − 1).

References

External links

Lp spaces
Basic concepts
L spaces
L spaces
L {\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
For Lebesgue measure
Applications & related
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Categories:
Clarkson's inequalities Add topic