Misplaced Pages

Bell diagonal state

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Quantum states of two qubits
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (April 2023)
Part of a series of articles about
Quantum mechanics
i d d t | Ψ = H ^ | Ψ {\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } Schrödinger equation
Background
Fundamentals
Experiments
Formulations
Equations
Interpretations
Advanced topics
Scientists

Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.

Definition

The Bell diagonal state is defined as the probabilistic mixture of Bell states:

| ϕ + = 1 2 ( | 0 A | 0 B + | 1 A | 1 B ) {\displaystyle |\phi ^{+}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |0\rangle _{B}+|1\rangle _{A}\otimes |1\rangle _{B})}
| ϕ = 1 2 ( | 0 A | 0 B | 1 A | 1 B ) {\displaystyle |\phi ^{-}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |0\rangle _{B}-|1\rangle _{A}\otimes |1\rangle _{B})}
| ψ + = 1 2 ( | 0 A | 1 B + | 1 A | 0 B ) {\displaystyle |\psi ^{+}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |1\rangle _{B}+|1\rangle _{A}\otimes |0\rangle _{B})}
| ψ = 1 2 ( | 0 A | 1 B | 1 A | 0 B ) {\displaystyle |\psi ^{-}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |1\rangle _{B}-|1\rangle _{A}\otimes |0\rangle _{B})}

In density operator form, a Bell diagonal state is defined as

ϱ B e l l = p 1 | ϕ + ϕ + | + p 2 | ϕ ϕ | + p 3 | ψ + ψ + | + p 4 | ψ ψ | {\displaystyle \varrho ^{Bell}=p_{1}|\phi ^{+}\rangle \langle \phi ^{+}|+p_{2}|\phi ^{-}\rangle \langle \phi ^{-}|+p_{3}|\psi ^{+}\rangle \langle \psi ^{+}|+p_{4}|\psi ^{-}\rangle \langle \psi ^{-}|}

where p 1 , p 2 , p 3 , p 4 {\displaystyle p_{1},p_{2},p_{3},p_{4}} is a probability distribution. Since p 1 + p 2 + p 3 + p 4 = 1 {\displaystyle p_{1}+p_{2}+p_{3}+p_{4}=1} , a Bell diagonal state is determined by three real parameters. The maximum probability of a Bell diagonal state is defined as p m a x = max { p 1 , p 2 , p 3 , p 4 } {\displaystyle p_{max}=\max\{p_{1},p_{2},p_{3},p_{4}\}} .

Properties

1. A Bell-diagonal state is separable if all the probabilities are less or equal to 1/2, i.e., p max 1 / 2 {\displaystyle p_{\text{max}}\leq 1/2} .

2. Many entanglement measures have a simple formulas for entangled Bell-diagonal states:

Relative entropy of entanglement: S r = 1 h ( p max ) {\displaystyle S_{r}=1-h(p_{\text{max}})} , where h {\displaystyle h} is the binary entropy function.

Entanglement of formation: E f = h ( 1 2 + p max ( 1 p max ) ) {\displaystyle E_{f}=h({\frac {1}{2}}+{\sqrt {p_{\text{max}}(1-p_{\text{max}})}})} ,where h {\displaystyle h} is the binary entropy function.

Negativity: N = p max 1 / 2 {\displaystyle N=p_{\text{max}}-1/2}

Log-negativity: E N = log ( 2 p max ) {\displaystyle E_{N}=\log(2p_{\text{max}})}

3. Any 2-qubit state where the reduced density matrices are maximally mixed, ρ A = ρ B = I / 2 {\displaystyle \rho _{A}=\rho _{B}=I/2} , is Bell-diagonal in some local basis. Viz., there exist local unitaries U = U 1 U 2 {\displaystyle U=U_{1}\otimes U_{2}} such that U ρ U {\displaystyle U\rho U^{\dagger }} is Bell-diagonal.

References

  1. ^ Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol (2009-06-17). "Quantum entanglement". Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. S2CID 260606370.
  2. ^ Horodecki, Ryszard; Horodecki, Michal/ (1996-09-01). "Information-theoretic aspects of inseparability of mixed states". Physical Review A. 54 (3): 1838–1843. arXiv:quant-ph/9607007. Bibcode:1996PhRvA..54.1838H. doi:10.1103/PhysRevA.54.1838. PMID 9913669. S2CID 2340228.
  3. Vedral, V.; Plenio, M. B.; Rippin, M. A.; Knight, P. L. (1997-03-24). "Quantifying Entanglement". Physical Review Letters. 78 (12): 2275–2279. arXiv:quant-ph/9702027. Bibcode:1997PhRvL..78.2275V. doi:10.1103/PhysRevLett.78.2275. hdl:10044/1/300. S2CID 16118336.
Categories:
Bell diagonal state Add topic