Quantum states of two qubits
Part of a series of articles about Quantum mechanics
i
ℏ
d
d
t
|
Ψ
⟩
=
H
^
|
Ψ
⟩
{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }
Schrödinger equation
Background
Fundamentals
Experiments
Formulations
Equations
Interpretations
Advanced topics
Scientists
Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.
Definition
The Bell diagonal state is defined as the probabilistic mixture of Bell states :
|
ϕ
+
⟩
=
1
2
(
|
0
⟩
A
⊗
|
0
⟩
B
+
|
1
⟩
A
⊗
|
1
⟩
B
)
{\displaystyle |\phi ^{+}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |0\rangle _{B}+|1\rangle _{A}\otimes |1\rangle _{B})}
|
ϕ
−
⟩
=
1
2
(
|
0
⟩
A
⊗
|
0
⟩
B
−
|
1
⟩
A
⊗
|
1
⟩
B
)
{\displaystyle |\phi ^{-}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |0\rangle _{B}-|1\rangle _{A}\otimes |1\rangle _{B})}
|
ψ
+
⟩
=
1
2
(
|
0
⟩
A
⊗
|
1
⟩
B
+
|
1
⟩
A
⊗
|
0
⟩
B
)
{\displaystyle |\psi ^{+}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |1\rangle _{B}+|1\rangle _{A}\otimes |0\rangle _{B})}
|
ψ
−
⟩
=
1
2
(
|
0
⟩
A
⊗
|
1
⟩
B
−
|
1
⟩
A
⊗
|
0
⟩
B
)
{\displaystyle |\psi ^{-}\rangle ={\frac {1}{\sqrt {2}}}(|0\rangle _{A}\otimes |1\rangle _{B}-|1\rangle _{A}\otimes |0\rangle _{B})}
In density operator form, a Bell diagonal state is defined as
ϱ
B
e
l
l
=
p
1
|
ϕ
+
⟩
⟨
ϕ
+
|
+
p
2
|
ϕ
−
⟩
⟨
ϕ
−
|
+
p
3
|
ψ
+
⟩
⟨
ψ
+
|
+
p
4
|
ψ
−
⟩
⟨
ψ
−
|
{\displaystyle \varrho ^{Bell}=p_{1}|\phi ^{+}\rangle \langle \phi ^{+}|+p_{2}|\phi ^{-}\rangle \langle \phi ^{-}|+p_{3}|\psi ^{+}\rangle \langle \psi ^{+}|+p_{4}|\psi ^{-}\rangle \langle \psi ^{-}|}
where
p
1
,
p
2
,
p
3
,
p
4
{\displaystyle p_{1},p_{2},p_{3},p_{4}}
is a probability distribution. Since
p
1
+
p
2
+
p
3
+
p
4
=
1
{\displaystyle p_{1}+p_{2}+p_{3}+p_{4}=1}
, a Bell diagonal state is determined by three real parameters. The maximum probability of a Bell diagonal state is defined as
p
m
a
x
=
max
{
p
1
,
p
2
,
p
3
,
p
4
}
{\displaystyle p_{max}=\max\{p_{1},p_{2},p_{3},p_{4}\}}
.
Properties
1. A Bell-diagonal state is separable if all the probabilities are less or equal to 1/2, i.e.,
p
max
≤
1
/
2
{\displaystyle p_{\text{max}}\leq 1/2}
.
2. Many entanglement measures have a simple formulas for entangled Bell-diagonal states:
Relative entropy of entanglement :
S
r
=
1
−
h
(
p
max
)
{\displaystyle S_{r}=1-h(p_{\text{max}})}
, where
h
{\displaystyle h}
is the binary entropy function .
Entanglement of formation :
E
f
=
h
(
1
2
+
p
max
(
1
−
p
max
)
)
{\displaystyle E_{f}=h({\frac {1}{2}}+{\sqrt {p_{\text{max}}(1-p_{\text{max}})}})}
,where
h
{\displaystyle h}
is the binary entropy function .
Negativity :
N
=
p
max
−
1
/
2
{\displaystyle N=p_{\text{max}}-1/2}
Log-negativity :
E
N
=
log
(
2
p
max
)
{\displaystyle E_{N}=\log(2p_{\text{max}})}
3. Any 2-qubit state where the reduced density matrices are maximally mixed,
ρ
A
=
ρ
B
=
I
/
2
{\displaystyle \rho _{A}=\rho _{B}=I/2}
, is Bell-diagonal in some local basis. Viz., there exist local unitaries
U
=
U
1
⊗
U
2
{\displaystyle U=U_{1}\otimes U_{2}}
such that
U
ρ
U
†
{\displaystyle U\rho U^{\dagger }}
is Bell-diagonal.
References
^ Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol (2009-06-17). "Quantum entanglement" . Reviews of Modern Physics . 81 (2): 865–942. arXiv :quant-ph/0702225 . Bibcode :2009RvMP...81..865H . doi :10.1103/RevModPhys.81.865 . S2CID 260606370 .
^ Horodecki, Ryszard; Horodecki, Michal/ (1996-09-01). "Information-theoretic aspects of inseparability of mixed states" . Physical Review A . 54 (3): 1838–1843. arXiv :quant-ph/9607007 . Bibcode :1996PhRvA..54.1838H . doi :10.1103/PhysRevA.54.1838 . PMID 9913669 . S2CID 2340228 .
Vedral, V.; Plenio, M. B.; Rippin, M. A.; Knight, P. L. (1997-03-24). "Quantifying Entanglement" . Physical Review Letters . 78 (12): 2275–2279. arXiv :quant-ph/9702027 . Bibcode :1997PhRvL..78.2275V . doi :10.1103/PhysRevLett.78.2275 . hdl :10044/1/300 . S2CID 16118336 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑