Revision as of 10:51, 12 May 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{chembox}} (no changed fields - added verified revid - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (← Previous edit | Latest revision as of 10:42, 1 March 2024 edit undoMaxim Masiutin (talk | contribs)Extended confirmed users, IP block exemptions, Pending changes reviewers31,104 edits Add: bibcode, url. Removed parameters. | Use this tool. Report bugs. | #UCB_Gadget | ||
(47 intermediate revisions by 33 users not shown) | |||
Line 1: | Line 1: | ||
{{chembox | {{chembox | ||
| Watchedfields = changed | |||
| verifiedrevid = |
| verifiedrevid = 428732433 | ||
|ImageFile=Coen3.png | |||
| ImageFile =Tris(ethylenediamine)cobalt(III) (molecular diagram).svg | |||
|ImageSize=300px | |||
| |
| ImageSize =| ImageFileL2 = Lambda-Tris(ethylenediamine)cobalt(III)-chloride-3D-balls-by-AHRLS-2012.png | ||
| ImageSizeL2 = 150px | |||
⚫ | |OtherNames= tris(ethylenediamine)cobalt(III) chloride | ||
| ImageFileR2 = Delta-Tris(ethylenediamine)cobalt(III)-chloride-3D-balls-by-AHRLS-2012.png | |||
|Section1= {{Chembox Identifiers | |||
| ImageSizeR2 = 150px | |||
⚫ | | |
||
| PubChem= | |||
| IUPACName =cobalt tris(ethylenediamine) chloride | |||
| SMILES= | |||
⚫ | | OtherNames = tris(ethylenediamine)cobalt(III) chloride | ||
⚫ | |||
| |
|Section1={{Chembox Identifiers | ||
| index3_label = trihydrate: | |||
⚫ | | |
||
| index2_label = dihydrate: | |||
| MolarMass=345.59 | |||
| CASNo_Ref = {{cascite|correct|??}} | |||
⚫ | | |
||
⚫ | | CASNo =207802-43-5 | ||
| Density= | |||
| ChemSpiderID = 147079 | |||
| MeltingPt=275°C (decomp) | |||
| |
| DTXSID = | ||
| DTXSID2 = DTXSID10746548 | |||
| Solubility=water | |||
| PubChem2 = 71311392 | |||
| PubChem3 = 73995044 | |||
| InChI=1S/3C2H8N2.3ClH.Co/c3*3-1-2-4;;;;/h3*1-4H2;3*1H;/q;;;;;;+3/p-3 | |||
| InChIKey = NFUAZJFARNNNFB-UHFFFAOYSA-K | |||
| SMILES = C(CN)N.C(CN)N.C(CN)N.... | |||
| InChI2=1S/3C2H8N2.3ClH.Co.2H2O/c3*3-1-2-4;;;;;;/h3*1-4H2;3*1H;;2*1H2/q;;;;;;+3;;/p-3 | |||
| InChIKey2 = ALLUKJGRPOLBEF-UHFFFAOYSA-K | |||
| SMILES2 = C(CN)N.C(CN)N.C(CN)N.O.O.Cl(Cl)Cl | |||
| InChI3=1S/3C2H8N2.3ClH.Co.3H2O/c3*3-1-2-4;;;;;;;/h3*1-4H2;3*1H;;3*1H2/q;;;;;;+3;;;/p-3 | |||
| InChIKey3 = WBMVTRUQSMZIKW-UHFFFAOYSA-K | |||
| SMILES3 = C(CN)N.C(CN)N.C(CN)N.O.O.O.... | |||
}} | }} | ||
| |
|Section2={{Chembox Properties | ||
⚫ | | Formula =C<sub>6</sub>H<sub>24</sub>N<sub>6</sub>Cl<sub>3</sub>Co | ||
| MainHazards= | |||
| MolarMass =345.59 | |||
| FlashPt= | |||
⚫ | | Appearance =yellow-orange solid | ||
| Autoignition= | |||
| Density = | |||
| MeltingPtC = 275 | |||
| MeltingPt_notes = (decomposes) | |||
| BoilingPt = | |||
| Solubility = | |||
}} | }} | ||
|Section3={{Chembox Hazards | |||
| MainHazards = | |||
| FlashPt = | |||
| AutoignitionPt = | |||
⚫ | }} | ||
}} | }} | ||
'''Tris(ethylenediamine)cobalt(III) chloride''' is |
'''Tris(ethylenediamine)cobalt(III) chloride''' is an ] with the formula Cl<sub>3</sub> (where "en" is the abbreviation for ]). It is the chloride salt of the ] <sup>3+</sup>. This trication was important in the history of coordination chemistry because of its stability and its ]. Many different salts have been described. The complex was first described by ] who isolated this salt as yellow-gold needle-like crystals.<ref>{{cite journal | ||
| author = A. Werner | | author = A. Werner | ||
| title = Zur Kenntnis des asymmetrischen Kobaltatoms. V | | title = Zur Kenntnis des asymmetrischen Kobaltatoms. V | ||
Line 33: | Line 54: | ||
| issue = 1 | | issue = 1 | ||
| pages = 121–130 | | pages = 121–130 | ||
| doi = 10.1002/cber.19120450116 |
| doi = 10.1002/cber.19120450116| url = https://zenodo.org/record/1426471 | ||
}}</ref> | |||
==Synthesis and structure== | ==Synthesis and structure== | ||
The compound is prepared from an aqueous solution of ethylenediamine and virtually any cobalt(II) salt, such as ]. The solution is purged with air to oxidize the cobalt(II)-ethylenediamine complexes to cobalt(III). The reaction proceeds in 95% yield, and the |
The compound is prepared from an aqueous solution of ethylenediamine and virtually any cobalt(II) salt, such as ]. The solution is purged with air to oxidize the cobalt(II)-ethylenediamine complexes to cobalt(III). The reaction proceeds in 95% yield, and the ] can be isolated with a variety of anions. A detailed product analysis of a large-scale synthesis revealed that one minor by-product was Cl<sub>3</sub>, which contains a rare monodentate ethylenediamine ligand (protonated).<ref>{{cite journal | ||
| |
|author1=Jack M. Harrowfield |author2=Mark I. Ogden |author3=Brian W. Skelton |author4=Allan H. White | title = Alfred Werner Revisited: Some Subtleties of Complex Ion Synthesis and Isomerism | ||
⚫ | | journal = Comptes Rendus Chimie | ||
| title = Alfred Werner revisited: Some subtleties of complex ion synthesis and isomerism | |||
⚫ | | journal = |
||
| year = 2005 | | year = 2005 | ||
| volume = 8 | | volume = 8 | ||
| issue = 2 | | issue = 2 | ||
| pages = 121–128 | | pages = 121–128 | ||
| doi = 10.1016/j.crci.2004.10.013}}</ref> | | doi = 10.1016/j.crci.2004.10.013|hdl=20.500.11937/8231 |url=https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2004.10.013/ | hdl-access = free}}</ref> | ||
The cation <sup>3+</sup> is ] with Co-N distances in the range 1. |
The cation <sup>3+</sup> is ] with Co-N distances in the range 1.947–1.981 ]. The N-Co-N angles are 85° within the chelate rings and 90° between nitrogen atoms on adjacent rings.<ref name=Wit>{{cite journal | ||
| author = D. Witiak, J. C. Clardy, and D. S. Martin, Jnr. | | author = D. Witiak, J. C. Clardy, and D. S. Martin, Jnr. | ||
| title = The Crystal Structure of (+)-D- |
| title = The Crystal Structure of (+)-D-Tris(ethylenediamine)cobalt(III) Nitrate | ||
| journal = ] | | journal = ] | ||
| year = 1972 | | year = 1972 | ||
Line 54: | Line 75: | ||
| issue = 9 | | issue = 9 | ||
| pages = 2694–2699 | | pages = 2694–2699 | ||
| doi = 10.1107/S056774087200679X |
| doi = 10.1107/S056774087200679X| bibcode = 1972AcCrB..28.2694W | ||
}}</ref> | |||
==Stereochemistry== | ==Stereochemistry== | ||
⚫ | <sup>3+</sup>. One of the three C<sub>2</sub> symmetry axes is shown in red.]] | ||
⚫ | The complex can be resolved into ]s that are described as Δ and Λ. Usually the resolution entails use of ] salts.<ref>{{cite |
||
⚫ | | |
||
⚫ | The point group of this complex is D<sub>3</sub>. The complex can be resolved into ]s that are described as Δ and Λ. Usually the resolution entails use of ] salts.<ref>{{cite book | ||
| editor1-last = Rochow | |||
⚫ | |author=J. A. Broomhead |author2=F. P. Dwyer |author3=J. W. Hogarth | ||
| editor1-first = Eugene G. | |||
| title = Resolution of the Tris(Ethylenediamine)Cobalt(III) Ion | | title = Inorganic Syntheses | ||
| chapter = Resolution of the Tris(Ethylenediamine)Cobalt(III) Ion | |||
| journal = Inorganic Syntheses | |||
| year = 1960 | | year = 1960 | ||
| volume = VI | | volume = VI | ||
| pages = 183–186 | | pages = 183–186 | ||
| doi =10.1002/9780470132371.ch58| isbn =978-0-470-13237-1 | |||
|
}}</ref> The optical resolution is a standard component of inorganic synthesis courses.<ref>Girolami, G. S.; Rauchfuss, T. B. and Angelici, R. J., Synthesis and Technique in Inorganic Chemistry, University Science Books: Mill Valley, CA, 1999 {{ISBN|0-935702-48-2}}</ref> Because of its nonplanarity, the MN<sub>2</sub>C<sub>2</sub> rings can adopt either of two ], which are described by the symbols λ and δ. The registry between these ring conformations and the absolute configuration of the metal centers is described by the nomenclature lel (when the en backbone lies parallel with the C<sub>3</sub> symmetry axis) or ob (when the en backbone is obverse to this same C<sub>3</sub> axis). Thus, the following ]ic conformations can be identified: Δ-('''lel''')<sub>3</sub>, Δ-(lel)<sub>2</sub>(ob), Δ-(lel)(ob)<sub>2</sub>, and Δ-('''ob''')<sub>3</sub>. The mirror images of these species of course exist also.<ref>von Zelewsky, A. "Stereochemistry of Coordination Compounds" John Wiley: Chichester, 1995 {{ISBN|047195599X}}.</ref> | ||
⚫ | <sup>3+</sup>. One of the three C<sub>2</sub> symmetry axes is shown in red.]] | ||
==Hydrates== | ==Hydrates== | ||
Cationic coordination complexes of ] and ] amines typically crystallize with water in the ], and the stoichiometry can depend on the conditions of crystallization and, in the cases of chiral complexes, the optical purity of the cation. Racemic Cl<sub>3</sub> is most often obtained as the di- or trihydrate. For the optically pure salt (+)-Cl<sub>3</sub> |
Cationic coordination complexes of ] and ] amines typically crystallize with water in the ], and the stoichiometry can depend on the conditions of crystallization and, in the cases of chiral complexes, the optical purity of the cation. Racemic Cl<sub>3</sub> is most often obtained as the di- or trihydrate. For the optically pure salt (+)-Cl<sub>3</sub>·1.5H<sub>2</sub>O, (+)-Cl<sub>3</sub>·0.5NaCl·3H<sub>2</sub>O, and (+)-Cl<sub>3</sub>·H<sub>2</sub>O are also known.<ref name=Wit/> | ||
==References== | ==References== | ||
{{reflist}} | |||
<references/> | |||
] | ] | ||
] | |||
] | ] | ||
] | ] | ||
] | ] |
Latest revision as of 10:42, 1 March 2024
| |||
Names | |||
---|---|---|---|
IUPAC name cobalt tris(ethylenediamine) chloride | |||
Other names tris(ethylenediamine)cobalt(III) chloride | |||
Identifiers | |||
CAS Number | |||
3D model (JSmol) |
| ||
ChemSpider | |||
PubChem CID | |||
CompTox Dashboard (EPA) |
| ||
InChI
| |||
SMILES
| |||
Properties | |||
Chemical formula | C6H24N6Cl3Co | ||
Molar mass | 345.59 | ||
Appearance | yellow-orange solid | ||
Melting point | 275 °C (527 °F; 548 K) (decomposes) | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Tris(ethylenediamine)cobalt(III) chloride is an inorganic compound with the formula Cl3 (where "en" is the abbreviation for ethylenediamine). It is the chloride salt of the coordination complex . This trication was important in the history of coordination chemistry because of its stability and its stereochemistry. Many different salts have been described. The complex was first described by Alfred Werner who isolated this salt as yellow-gold needle-like crystals.
Synthesis and structure
The compound is prepared from an aqueous solution of ethylenediamine and virtually any cobalt(II) salt, such as cobalt(II) chloride. The solution is purged with air to oxidize the cobalt(II)-ethylenediamine complexes to cobalt(III). The reaction proceeds in 95% yield, and the trication can be isolated with a variety of anions. A detailed product analysis of a large-scale synthesis revealed that one minor by-product was Cl3, which contains a rare monodentate ethylenediamine ligand (protonated).
The cation is octahedral with Co-N distances in the range 1.947–1.981 Å. The N-Co-N angles are 85° within the chelate rings and 90° between nitrogen atoms on adjacent rings.
Stereochemistry
The point group of this complex is D3. The complex can be resolved into enantiomers that are described as Δ and Λ. Usually the resolution entails use of tartrate salts. The optical resolution is a standard component of inorganic synthesis courses. Because of its nonplanarity, the MN2C2 rings can adopt either of two conformations, which are described by the symbols λ and δ. The registry between these ring conformations and the absolute configuration of the metal centers is described by the nomenclature lel (when the en backbone lies parallel with the C3 symmetry axis) or ob (when the en backbone is obverse to this same C3 axis). Thus, the following diastereomeric conformations can be identified: Δ-(lel)3, Δ-(lel)2(ob), Δ-(lel)(ob)2, and Δ-(ob)3. The mirror images of these species of course exist also.
Hydrates
Cationic coordination complexes of ammonia and alkyl amines typically crystallize with water in the lattice, and the stoichiometry can depend on the conditions of crystallization and, in the cases of chiral complexes, the optical purity of the cation. Racemic Cl3 is most often obtained as the di- or trihydrate. For the optically pure salt (+)-Cl3·1.5H2O, (+)-Cl3·0.5NaCl·3H2O, and (+)-Cl3·H2O are also known.
References
- A. Werner (1912). "Zur Kenntnis des asymmetrischen Kobaltatoms. V". Chemische Berichte. 45 (1): 121–130. doi:10.1002/cber.19120450116.
- Jack M. Harrowfield; Mark I. Ogden; Brian W. Skelton; Allan H. White (2005). "Alfred Werner Revisited: Some Subtleties of Complex Ion Synthesis and Isomerism". Comptes Rendus Chimie. 8 (2): 121–128. doi:10.1016/j.crci.2004.10.013. hdl:20.500.11937/8231.
- ^ D. Witiak, J. C. Clardy, and D. S. Martin, Jnr. (1972). "The Crystal Structure of (+)-D-Tris(ethylenediamine)cobalt(III) Nitrate". Acta Crystallographica. B28 (9): 2694–2699. Bibcode:1972AcCrB..28.2694W. doi:10.1107/S056774087200679X.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - J. A. Broomhead; F. P. Dwyer; J. W. Hogarth (1960). "Resolution of the Tris(Ethylenediamine)Cobalt(III) Ion". Inorganic Syntheses. Vol. VI. pp. 183–186. doi:10.1002/9780470132371.ch58. ISBN 978-0-470-13237-1.
- Girolami, G. S.; Rauchfuss, T. B. and Angelici, R. J., Synthesis and Technique in Inorganic Chemistry, University Science Books: Mill Valley, CA, 1999 ISBN 0-935702-48-2
- von Zelewsky, A. "Stereochemistry of Coordination Compounds" John Wiley: Chichester, 1995 ISBN 047195599X.